
 

Splay Trees

Roger Fu



Binary Search Trees

Empty or tuple x L R

x

Lx

L R

x is the key L the leftsubtree R the rightsubtree

Binarysearch tree property all keys in L all keys in R x



Binary Search Tree A Weakness

I

Searching for 1,2 n t n takes

nt n 1 t 2 1 operations

Idea introduce splay trees to get subquadratic time



Splay Trees

Intuition make recently accessed elements easy
to acess again

We will splay the lastaccessed node to the root
after each operation



Rotation

z

y
Y D

A X z
C

A B A B C D

Right rotation



Rotation

x

y

y A
A

X Z

13
2

A B C D
C D

Left rotation



Rotating Towards Root

If x is left right childof p we say a right left
rotation rotates towards the roof

x replaces p as root



Naive Attempt Rotate to Root
Natural 1ˢᵗ idea repeatedly rotate node x to root

Denote as rtr x



Naive Attempt Rotate to Root
Natural 1ˢᵗ idea repeatedly rotate node x to root

Denote as rtr x

Problem
no

Consider rtr l rtr n



Naive Attempt Rotate to Root
Claim After rtr l rer k we get

1210
Pf Induct

Note that rtr Rti takes O n k rotations total O n



The Splay Operation
splay x
while x is not the root
PE X parent
if p is the root
rotate x towards root

else
if p and x both left rightchildren

zig zig x

else

zig zag x



Zig zag

9 g x

p D
D P 9

A P C A B C D

A B
B C



Zig zig
g

x

p
p D

A P
A xx 9 B 9c

A B A B C D C D

Remark This is the difference between rotate to root splay



Binary Search Tree Operations
Usual binary search tree operations augmented
by splaying last accessed node insertion searching

Deletion if node is deleted splay the parent

swapvalues

splay



Splitting
Split given splay tree T partition into T TUT where

all keys in T Ex all keys in T

1 Find largest y ex sit YET
2 Splay y to root
3 Partition right subtree into Tz

Y
T

T2

y
x



Merging
Merge given T T where max T C min Te combine to form T T.VE

1 Splay largest element of T to root
2 Attach T as right child ofT

y y
t

ay y y y



Time Complexity
Time complexity dominated by cost of searching
for splaying node

Problem runtime of splaying depends on structure
of tree which depends on previous operations done

Can establish amortized bound of O log n



Detour Amortized Analysis
Let T O runtime of operation 0 3 Tamo C

function on operations Tamo upper bounds the amortized
run time if for any sequence of operations Q Or
we have

4 Tactual O IfTamont O
Intuition Amortized time complexity is likeaverageupper bound



Splay Trees Range Queries I

Range query problem given list Xn support
1 Calculating f xi Xin
2 Changing Ki

Will focus on case where there exists g such
that

g g f Xi Xk i 242 f aka Xj

Example
f is the sum

f is the max
f is max subarray sum



Splay Trees Range Queries I

Augment splay tree T by storing f T at root node

Combining g g f Ll x f R

x

L R

assume recursively
f L f R known

Note when rotating f needs to be recomputed



Splay Tree RangeQueries I
1 Construct splay tree w̅ keys 1,2 in

2 At node i store 71 and for each subtree T
compute f T

3 To query f Xi split on i I and j

T Tz

j i

Return f T and merge the trees back together



Splay Tree Range Queries I
4 To update Xi splay it node to root update xi

Only need to recompute f T

Time Complexity
Operations dominated by cost ofsplaying
Amortized O clog n where c is cost of gl
Warning Splay tree is generally slower than

segment tree

JUST BECAUSE BOTH ARF O lo n

DOES NOT MAKE THEM INTERCHANGABLE



Implicitly Keyed Splay Trees
Idea Instead of explicitly using 1 in as keys use

order in in order traversal as key

Advantages Supports modifying underlying list
Insertion at arbitray indices
Deletion of arbitrary indices
Moving subarrays around
Reversing subarrays



Implicitly Keyed Splay Trees
def get_val x node pos int

if Sz x 2 I pos
splay x
return x

else if szlx.LI I pos
return get_val x R pos szlx.LI 1

else
return get_val x L pos

Remark You can similarly modify split Join becomes
equivalent to concatination



Lazy Propogation
Idea Instead of applying update to range update thestored aggregate value and set flag to propagate

changes to children

Example Range sum update query
For each subtree T store sum f T
To query sum split

T Tz Tz
1

and return f Tz
To update split and update lazy propogationflag
on T and update f T



Reversing Ranges
Lazy propogation to swap left right child

Be careful if your aggregate function f is not commutative
Example largestprefix sum



Practice Problems

spoj.com problems SE Q2

dmoj.ca problem ccolbp6

dmoj.ca problem ds4



Hints
SEQ 2 you should aim to insert k consequtive numbers

in Ock log n

Verify inductively the insertedelements form a tree like

and inserting Kitkt gives
Dith

Kitktl



Bonus Size Balanced Tree
Balanced binary search tree that balances itself by
checking invariant on subtree sizes

Advantages over splay tree
Doesn't store extra data for rebalancing splay tree needs
parent pointers

Tendancyofperfect BST in practice

Disadvantages compared to splay tree
Not clear how to implement splitmerge


